欢迎访问 中国智慧物流网
  • 主管单位:住建部中国城市科学研究会
  • 组长单位:中物协(北京)物流工程设计院
新闻资讯 News
热点新闻 HOT NEWS

智慧物流 | 苏宁智能运输路线技术设计

日期: 2017-08-21
来源:
作者:
浏览次数: 104
分享到:



智慧物流 | 苏宁智能运输路线技术设计
来自物流的挑战
智慧物流 | 苏宁智能运输路线技术设计

近年来,随着电商增速的放缓,市场对电商企业提供的差异化服务提出更高要求,而物流则首当其冲,一方面需要满足用户更高的服务质量要求,而另一方面电商物流要从成本中心变成利润中心,满足企业运作的效益需求。面对这个现况,苏宁物流研发运用大数据技术,分析历史数据,预测未来趋势,运用最优化算法来合理调度资源,安排计划,以系统性的提升整体物流运营效率,降低运营成本,从而提升用户体验。

苏宁运用大数据技术,在天眼系统中,研发了运输路线规划和动态调整系统模块,运用人工智能代替传统的调度员决策的模式,优化现有运输网络布局和路线,充分发挥有效的运输生产力,实现运输里程最短、成本最低、服务时效最优,将大大提升苏宁易购平台的物流服务能力。

智慧物流 | 苏宁智能运输路线技术设计
人工智能优化车辆运输路线
智慧物流 | 苏宁智能运输路线技术设计

目前,苏宁物流的运输主要分为干线运输和支线运输,干线运输即为物流中心到物流中心的运输,运输模式是将由区域配送中心的货物发往其辐射的城市配送中心,以及同级别的物流中心之间货量相互调拨;而支线运输即为物流中心到快递点的运输,运输模式是将物流中心的货物分派到所辐射的不同的快递点中去。无轮干线运输还是支线运输都存在两种方式,直发或者中转,如果点到点都采用直发的模式,那运输路线的设计就很简单了,但是如果点到点的运输货量需求不大,直发的方式成本太高,则需要采用中转的方式。例如:A到B每天运输需求500件商品,A到C每天运输需求1000件商品,一辆车可以装货1600件,而B点又正好在A和C的中间,那么我们可以将运输路线设计为每天发一趟车从A到B再到C,采用这个方案既不降低时效,又提高了装载率,降低了成本。


智慧物流 | 苏宁智能运输路线技术设计


本身这个问题来源于运筹学上经典的车辆路径问题(Vehicle Routing Problem,VRP)。该问题最早是由Dantzig和Ramser于1959年首次提出,近年来国内国际上有相当多的学术研究,也发表了很多论文,用于求解此类问题。但是毕竟企业应用并不等同于学术研究,需要面对更复杂多变的应用场景,首先,如何确定运输需求?正常情况下只有用户下单后,运输需求才算真正确定,而此时距离真正的运输已经只有几个小时,这个时候再去调整运输路线,需要重新安排临时车辆,成本高,管理难度大,很难实施,因而,我们需要提前预知运输需求。

另外,预测的运输需求并不能保证100%准确,所以我们需要一套纠偏机制,及时的发现不合理的运输路线,并进行动态调整。同时,运输需求并不是一成不变的,因而我们需要定期对现有的路线做评估,当运输需求发生变化时,运输路线也会同步做出调整。因而我们设计了如下的技术方案: 

1.用机器学习算法预测运输货量需求;

2.根据货量需求规划最优化线路;

3.建立机器学习模型预判线路货量异常,建立动态模型根据实际货量对运输线路进行调整。

4.建立路线评估模型,发现不合适的运输路线,及时作出调整。



智慧物流 | 苏宁智能运输路线技术设计


智慧物流 | 苏宁智能运输路线技术设计
货量预测算法
智慧物流 | 苏宁智能运输路线技术设计

运输需求预测的本质就是预测消费者的购买行为,但又不完全相同,其中主要不同有以下四点:

1.我们并不关心消费者实际购买的商品,而只需预测其数量、体积、重量即可;

2.我们不但需要关注消费行为本身,同时也需要关注由此带来的货物移动需求,例如从哪个仓库发往哪个仓库,发往哪个快递点等;

3.预测运输需求需要考虑到下单时间,以及由此带来的不同的运输班次;

4.为了降低路线调整的成本,我们至少需要预测到未来一周到一个月的运输需求;



智慧物流 | 苏宁智能运输路线技术设计


智慧物流 | 苏宁智能运输路线技术设计
数据采集和清洗
智慧物流 | 苏宁智能运输路线技术设计

我们从苏宁的数据仓库中获取到各种与销量和配送量相关的数据,包括订单信息,用户浏览信息,购物车信息,线上和线下的促销计划,商品库存信息等,并对这些数据根据业务规则做处理和清洗。

智慧物流 | 苏宁智能运输路线技术设计
数据分析和特征选择
智慧物流 | 苏宁智能运输路线技术设计

对促销、流量等数据进行分析,抽取与销量波动相关的特征变量,将不同的特征变量带入同一有效的模型逐步验证特征变量的有效性;再将相同的特征变量应用到不同的模型中以测试不同模型的效果,并选择效果最佳的特征变量和模型作为销量预测模型。例如:我们选取了一些典型的SKU,对其促销活动数据和发货量数据作分析,发现发货量的异常波动和促销活动之间有极大的相关性。 



智慧物流 | 苏宁智能运输路线技术设计



智慧物流 | 苏宁智能运输路线技术设计
组合模型的设计
智慧物流 | 苏宁智能运输路线技术设计

我们使用不同算法对货量需求做预测,发现其各有所长,时间序列算法可以用于拟合相对较平稳的货量需求,但是当配送量大幅波动时,时间序列难以捕捉到其变化;回归算法擅长捕捉各自变量与因变量之间的影响关系,但是当影响因素太多,关系非常复杂时,其拟合准确性又往往难以达到预期。因而我们对历史配送量曲线做拆分,根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。对非平稳的时间序列数据进行平稳化处理。捕捉其长期趋势和循环变动,再用回归算法预测其残差,将结果组合用于预测货量。 



智慧物流 | 苏宁智能运输路线技术设计



智慧物流 | 苏宁智能运输路线技术设计
预测结果验证
智慧物流 | 苏宁智能运输路线技术设计

参数估计,检验是否具有统计意义。假设检验,判断(诊断)残差序列是否为白噪声序列。将数据分为训练集和测试集,将训练出的模型用测试集中的数据进行验证,确保预测模型的准确率。

智慧物流 | 苏宁智能运输路线技术设计
运输路线动态调整算法
智慧物流 | 苏宁智能运输路线技术设计

在天眼的监控模块会实时监控货量需求,当发现货量需求与预测值有较大波动时,会触发路线的动态调整算法,由于此时算法的时效性要求很高,所以我们选择启发式算法—节约算法以保证快速找出优化路线。算法的核心思想如下:

规定初始线路为实线线路即为L1点到每个K点的线路,然后计算线路的节约距离进行线路合并,L1到K3的距离大于K2到K3的距离,那么L1—>K3线路取消,K3的货经由K2送达,即形成新线路L1->K2->K3;同理,由于L1->K4距离大于K3->K4,所以形成新线路L1->K2->K3->K4 



智慧物流 | 苏宁智能运输路线技术设计



智慧物流 | 苏宁智能运输路线技术设计
路线评估模型
智慧物流 | 苏宁智能运输路线技术设计

路线评估模型主要从时效、单票成本、综合成本、等维度对路线的运营进行评估。货量预测模型每天都会对未来一个月的货量需求做预测,运输路线规划的模型会根据货量预测的结果重新规划合理的运输路线,并于当前路线做对比,由于运输路线调整牵涉到车辆、人员、承运商的重新安排,有一定的成本,所以系统设定阀值,用未来一个月的数据做测算依据,当新规划路线比原路线成本节省成本超过15%,则推荐调整当前运输路线。

智慧物流 | 苏宁智能运输路线技术设计
总结
智慧物流 | 苏宁智能运输路线技术设计

苏宁大数据运输路线优化项目已于年初正式投产,上线后运用大数据算法优化现有的运输路线,使得每条线路平均成本降幅5.78%,整体运营时效提升9.27%。运输路线优化只是苏宁物流众多的大数据应用之一,苏宁自研的天眼系统中还有库存ABC管理、快递点网络布局、自动化派工等各类运用大数据技术实现的人工智能替代人脑决策的应用。这些系统的上线极大的提升了苏宁物流的市场竞争力,苏宁物流研发也一直致力于在物流各个领域推广大数据应用,同时也在系统性能、算法准确度等方面持续优化。



来源:人工智能


地址:北京市东城区东长安街6号
电话:010-68519188  010-68519187 
传真:+86 0755-2788 8009
邮编:100834 
Copyright ©2005 - 2013 中国智慧物流网
犀牛云提供企业云服务
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开